Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Int J Biol Macromol ; 266(Pt 2): 131312, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582471

RESUMEN

Sodium alginate (SA) biopolymer has been recognized as an efficient adsorbent material owing to their unique characteristics, including biodegradability, non-toxic nature, and presence of abundant hydrophilic functional groups. Accordingly, in the current research work, UiO-66-OH and UiO-66-(OH)2 metal organic framework (MOF) nanoparticles (NPs) have been integrated into SA biopolymer-based three-dimensional (3-D) membrane capsules (MCs) via a simple and facile approach to remove toxic metal cations (Cu2+ and Cd2+) from water and real sewage. The newly configured capsules were characterized by FTIR, SEM, XRD, EDX and XPS analyses techniques. Exceptional sorption properties of the as-developed capsules were ensured by evaluation of the pertinent operational parameters, i.e., contents of MOF-NPs (1-100 wt%), adsorbent dosage (0.001-0.05 g), content time (0-360 h), pH (1-8), initial concentration of metal cations (5-1000 mg/L) and reaction temperature (298.15-333.15 K) on the eradication of Cu2+ and Cd2+ metal cations. It was found that hydrophilic functional groups (-OH and -COOH) have performed an imperative role in the smooth loading of MOF-NPs into 3-D membrane capsules via intra/inter-molecular hydrogen bonding and van der waals potencies. The maximum monolayer uptake capacities (as calculated by the Langmuir isotherm model) of Cd2+ and Cu2+ by 3-D SGMMCs-OH were 940 and 1150 mg/g, respectively, and by 3-D SGMMCs-(OH)2 were 1375 and 1575 mg/g, respectively, under optimum conditions. The as-developed capsules have demonstrated superior selectivity against targeted metal cations under designated pH and maintained >80 % removal efficiency up to six consecutive treatment cycles. Removal mechanisms of metal cations by the 3-D SGMMCs-OH/(OH)2 was proposed, and electrostatic interaction, ion-exchange, inner-sphere coordination bonds/interactions, and aromatic ligands exchange were observed to be the key removal mechanisms. Notably, FTIR and XPS analysis indicated that hydroxyl groups of Zr-OH and BDC-OH/(OH)2 aromatic linkers played vital roles in Cu2+ and Cd2+ adsorption by participating in inner-sphere coordination interactions and aromatic ligands exchange mechanisms. The as-prepared capsules indicated >70 % removal efficiency of Cu2+ from real electroplating wastewater in the manifestation of other competitive metal ions and pollutants under selected experimental conditions. Thus, it was observed that newly configured 3-D SGMMCs-OH/(OH)2 have offered a valuable discernment into the development of MOFs-based water decontamination 3-D capsules for industrial applications.


Asunto(s)
Alginatos , Estructuras Metalorgánicas , Aguas del Alcantarillado , Contaminantes Químicos del Agua , Purificación del Agua , Alginatos/química , Estructuras Metalorgánicas/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Purificación del Agua/métodos , Biopolímeros/química , Aguas del Alcantarillado/química , Cobre/química , Membranas Artificiales , Cápsulas/química , Nanopartículas/química , Cationes/química , Concentración de Iones de Hidrógeno , Cadmio/química , Cadmio/aislamiento & purificación , Agua/química
2.
Sci Total Environ ; 928: 172267, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38583628

RESUMEN

Soils represent crucial sinks for pharmaceuticals and microplastics, making them hotspots for pharmaceuticals and plastic pollution. Despite extensive research on the toxicity of pharmaceuticals and microplastics individually, there is limited understanding of their combined effects on soil biota. This study focused on the earthworm Eisenia fetida as test organism to evaluate the biotoxicity and bioaccumulation of the typical pharmaceutical naproxen and microplastics in earthworms. Results demonstrated that high concentrations of naproxen (100 mg kg-1) significantly increased the malondialdehyde (MDA) content, inducing lipid peroxidation. Even though the low exposure of naproxen exhibits no significant influence to Eisenia fetida, the lipid peroxidation caused by higher concentration than environmental relevant concentrations necessitate attention due to temporal and spatial concentration variability found in the soil environment. Meanwhile, microplastics caused oxidative damage to antioxidant enzymes by reducing the superoxide dismutase (SOD) activity and MDA content in earthworms. Metabolome analysis revealed increased lipid metabolism in naproxen-treated group and reduced lipid metabolism in the microplastic-treated group. The co-exposure of naproxen and microplastics exhibited a similar changing trend to the microplastics-treated group, emphasizing the significant influence of microplastics. The detection of numerous including lipids like 17-Hydroxyandrostane-3-glucuronide, lubiprostone, morroniside, and phosphorylcholine, serves to identify potential biomarkers for naproxen and microplastics exposure. Additionally, microplastics increased the concentration of naproxen in earthworms at sub-organ and subcellular level. This study contributes valuable insights into the biotoxicity and distribution of naproxen and microplastics in earthworms, enhancing our understanding of their combined ecological risk to soil biota.


Asunto(s)
Microplásticos , Naproxeno , Oligoquetos , Contaminantes del Suelo , Oligoquetos/efectos de los fármacos , Naproxeno/toxicidad , Animales , Contaminantes del Suelo/toxicidad , Microplásticos/toxicidad , Ecotoxicología , Suelo/química , Monitoreo del Ambiente
3.
Sci Total Environ ; 924: 171287, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38423316

RESUMEN

It remains challenging to establish reliable links between transformation products (TPs) of contaminants and corresponding microbes. This challenge arises due to the sophisticated experimental regime required for TP discovery and the compositional nature of 16S rRNA gene amplicon sequencing and mass spectrometry datasets, which can potentially confound statistical inference. In this study, we present a new strategy by combining the use of 2H-labeled Stable Isotope-Assisted Metabolomics (2H-SIAM) with a neural network-based algorithm (i.e., MMvec) to explore links between TPs of pyrene and the soil microbiome. The links established by this novel strategy were further validated using different approaches. Briefly, a metagenomic study provided indirect evidence for the established links, while the identification of pyrene degraders from soils, and a DNA-based stable isotope probing (DNA-SIP) study offered direct evidence. The comparison among different approaches, including Pearson's and Spearman's correlations, further confirmed the superior performance of our strategy. In conclusion, we summarize the unique features of the combined use of 2H-SIAM and MMvec. This study not only addresses the challenges in linking TPs to microbes but also introduces an innovative and effective approach for such investigations. Environmental Implication: Taxonomically diverse bacteria performing successive metabolic steps of the contaminant were firstly depicted in the environmental matrix.


Asunto(s)
Microbiota , Suelo , Suelo/química , ARN Ribosómico 16S , Isótopos/análisis , ADN , Pirenos , Redes Neurales de la Computación , Microbiología del Suelo
4.
Bull Environ Contam Toxicol ; 112(2): 32, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294690

RESUMEN

In this work, the characteristics and mechanisms for atrazine adsorption-desorption with 9 types of soils were investigated with batch equilibrium studies, elemental analyses, infrared spectroscopy, and UV‒visible spectroscopy. The atrazine sorption data for the 9 soils showed better fits with the Freundlich model than the Langmuir model, except with Red earth in Jiangxi (REJ) The results showed that the adsorption capacity was positively correlated with the organic matter (OM) content and negatively correlated with cation-exchange capacity (CEC) and pH. UV‒visible spectroscopy showed that dissolved organic matter (DOM) in the soil enhanced atrazine adsorption, but the adsorption on different DOM fractions was quite different. In addition, the infrared spectra revealed differences in the functional groups of soils and these functional groups may drive the adsorption process via hydrogen bonding and coordination with the -NH2 groups in atrazine.


Asunto(s)
Atrazina , Suelo , Adsorción , Agricultura , China , Materia Orgánica Disuelta
5.
J Hazard Mater ; 465: 133270, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38113743

RESUMEN

The increasing applications of emerging per- and polyfluoroalkyl substances (PFAS) have raised global concern. However, the release of emerging PFAS from the fluorochemical industry remains unclear. Herein, the occurrence of 48 emerging and legacy PFAS in wastewater from 10 fluorochemical manufacturers and mass flows of PFAS in a centralized wastewater treatment plant were investigated. Their distribution and ecological risk in neighboring riverine water were also evaluated. In wastewater from fluorochemical manufacturers, PFAS concentrations were in the range of 14,700-5200,000 ng/L and 2 H,2 H-perfluorooctanoic acid (6:2 FTCA), perfluorooctanoic acid (PFOA), N-ethyl perfluorooctane sulfonamide (N-EtFOSA), and 1 H,1 H,2 H,2 H-perfluorodecanesulfonate (8:2 FTS) were the major PFAS detected. Several PFAS displayed increased mass flows after wastewater treatment, especially PFOA and 6:2 FTCA. The mass flows of PFAS increased from - 20% to 233% after the activated sludge system but decreased by only 0-13% after the activated carbon filtration. In riverine water, PFAS concentrations were in the range of 5900-39,100 ng/L and 6:2 FTCA, 1 H,1 H,2 H,2 H-perfluorodecyl phosphate monoester (8:2 monoPAP), 1 H,1 H,2 H,2 H-perfluorooctyl phosphate monoester (6:2 monoPAP), PFOA, and perfluorohexanoic acid (PFHxA) were the major PFAS detected. PFOA and 6:2 FTCA exhibited comparable hazard quotients for ecological risk. Current wastewater treatment processes cannot fully remove various PFAS discharged by fluorochemical manufacturers, and further investigations on their risk are needed for better chemical management.

6.
Sci Total Environ ; 905: 167166, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730034

RESUMEN

Bisphenol S (BPS), being structurally similar to bisphenol A (BPA), has been widely used as an alternative to BPA in industrial applications. However, in-depth studies on the environmental behavior and fate of BPS in various soils have been rarely reported. Here, 14C-labeled BPS was used to investigate its mineralization, bound residues (BRs) formation and extractable residues (ERs) in three soils for 64 days. Significant differences were found in the dissipation rates of BPS in three soils with different pH values. The dissipation of BPS followed pseudo first-order kinetics with half-lives (T1/2) of 15.2 ± 0.1 d, 27.0 ± 0.2 d, 180.4 ± 5.3 d, and 280.5 ± 3.3 d in the alkaline soil (fluvo-aquic soil, FS), the neutral soil (cinnamon soil, CS), the acidic soil (red soil, RS), and sterilized cinnamon soil (CS-S), respectively. The mineralization and BRs formation contributed the most to the dissipation of BPS in soil. BPS was persistent in acidic soil, and may pose a significant threat to plants grown in acidic soils. Additionally, soil microorganisms played a key role in BPS degradation, and the organic matter content might be a major factor that promotes the adsorption and degradation of BPS in soils. Two transformed products, P-hydroxybenzenesulfonic acid and methylated BPS were identified in soils. This study provides new insights into the fate of BPS in various soils, which will be useful for risk assessments of BPS in soil.

7.
Water Res ; 245: 120617, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37738942

RESUMEN

Recently, microplastics (MPs) and nanoplastics (NPs) contamination is a worldwide problem owing to the immense usage of plastic commodities. Thus, the environmental risks by MPs and NPs demand the application of innovative, efficient, and sustainable technologies to control the pollution of plastic particles. Regarding this, numerous technologies, including adsorption, coagulation, filtration, bioremediation, chemical precipitation, and photocatalysis, have been engaged to eradicate MPs and NPs from contaminated waters. However, the coagulation technique is getting much attention owing to its simplicity, higher removal performance, low carbon footprint, and low operational and maintenance cost. Therefore, this paper has been designed to critically summarize the recent innovations on the application of coagulation process to eradicate MPs and NPs from both synthetic and real sewage. More importantly, the effect of pertinent factors, including characteristics of coagulants, MPs/NPs, and environmental medium on the elimination performances and mechanisms of MPs/NPs have been critically investigated. Further, the potential of coagulation technology in eliminating MPs and NPs from real sewage has been critically elucidated for the first time, for better execution of this technique at commercial levels. Finally, this critical review also presents current research gaps and future outlooks for the improvement of coagulation process for eradicating MPs and NPs from water and real sewage. Overall, the current review will offer valuable knowledge to scientists in selecting a suitable technique for controlling plastic pollution.

8.
Anal Methods ; 15(24): 2946-2954, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37305969

RESUMEN

A ratiometric nitenpyram (NIT) upconversion luminescence sensor UCNPs-PMOF was fabricated from a metal-porphyrin organic framework (PMOF) and pretreated UCNPs. The reaction between NIT and the PMOF releases the H2TCPP (5,10,15,20-tetracarboxyl phenyl) porphyrin ligand, which enhances the absorption of the system at 650 nm, and reduces the upconversion emission intensity of the sensor at 654 nm through a luminescence resonance energy transfer (LRET) mechanism, thus achieving the quantitative detection of NIT. The detection limit was 0.21 µM. Meanwhile, the emission peak of UCNPs-PMOF at 801 nm does not change with the concentration of NIT, and the emission intensity ratio (I654 nm/I801 nm) is used to achieve the ratiometric luminescence detection of NIT, and the detection limit is 0.22 µM. UCNPs-PMOF has good selectivity and anti-interference to NIT. In addition, it has a good recovery rate in actual sample detection, which indicates that it has high practicability and reliability in NIT detection.

9.
Sci Total Environ ; 887: 164139, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37178850

RESUMEN

With the widespread production and usage, silver nanoparticles (AgNPs) can be extensively found in the aquatic environment and co-exist with other pollutants for a prolonged time, leading to a more complex ecological risk in natural waters. In this work, the model freshwater algae Euglena sp. was selected to study the toxicity of AgNPs and explore their influences on the toxicity of two frequently detected personal care products, triclosan (TCS) and galaxolide (HHCB). The LC-MS targeted metabolomics was used to analyze the possible toxicity mechanism at the molecular level. Results showed that AgNPs was toxic to Euglena sp. upon 24 h exposure, but the toxicity decreased gradually as exposure times increased. AgNPs (<100 µg L-1) attenuated TCS and HHCB toxicity to Euglena sp., which could be attributed primarily to the decreased oxidative stress. Metabolomic analysis revealed that AgNPs induced a stress on algal defense system upon TCS exposure, but promoted the algal defense system upon HHCB exposure. Furthermore, DNA or RNA biosynthesis was accelerated in algae exposed to TCS or HHCB after the addition of AgNPs, implying that AgNPs may mitigate the genetic toxicity of TCS or HHCB in Euglena sp. These results emphasize the potential of metabolomics to reveal toxicity mechanism and provide new perspectives on the aquatic risk assessment of personal care products in the presence of AgNPs.


Asunto(s)
Cosméticos , Nanopartículas del Metal , Triclosán , Contaminantes Químicos del Agua , Triclosán/toxicidad , Plata/toxicidad , Nanopartículas del Metal/toxicidad , Agua Dulce , Contaminantes Químicos del Agua/toxicidad
10.
J Hazard Mater ; 451: 131071, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36889078

RESUMEN

Microplastics (MPs) are frequently detected in natural waters and usually acted as vectors for other pollutants, leading to possible threats to aquatic organisms. This study investigated the impact of polystyrene MPs (PS MPs) with different diameters on two algae Phaeodactylum tricornutum and Euglena sp., and the combined toxicity of PS MPs and diclofenac (DCF) in two algae was also studied. Significant inhibition of P. tricornutum was observed after 1 d exposure of 0.03 µm MPs at 1 mg L-1, whereas the decreased growth rate of Euglena sp. was recovered after 2 d exposure. However, their toxicity decreased in the presence of MPs with larger diameters. The oxidative stress contributed a major for the size-dependent toxicity of PS MPs in P. tricornutum, while in Euglena sp. the toxicity was mainly caused by a combination of oxidative damage and hetero-aggregation. Also, PS MPs alleviated the toxicity of DCF in P. tricornutum and the DCF toxicity continually decreased as their diameter increased, whereas the DCF at environmentally concentration could weaken the toxicity of MPs in Euglena sp. Moreover, the Euglena sp. revealed a higher removal for DCF, especially in the presence of MPs, but the higher accumulation and bioaccumulation factors (BCFs) indicated a possible ecological risk in natural waters. The present study explored discrepancy on the size-dependent toxicity and removal of MPs associated with DCF in two algae, providing valuable data for risk assessment and pollution control of MPs associated with DCF.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Microplásticos/toxicidad , Plásticos/toxicidad , Diclofenaco/toxicidad , Contaminantes Químicos del Agua/toxicidad , Poliestirenos/toxicidad
11.
Sci Total Environ ; 867: 161169, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36581266

RESUMEN

Due to the strict rules and restrictions on the utilization of bisphenol A (BPA) around the world, an emerging endocrine disrupting chemical, bisphenol S (BPS) has been widely utilized as a substitute and frequently detected in the environment, even in the human body. Although it has been widely studied in the aquatic systems, the fate and toxicological effect of BPS in soil invertebrates are poorly known. This study presented a comprehensive exploration into the attenuation, bioaccumulation, and physiological distribution of BPS in an ecologically significant soil invertebrate, as well as its subsequent ecotoxicological effect to earthworm for the first time. The E. fetida could promote the BPS attenuation in soil, with degradation rates of 92.8 ± 1.6 % and 98.6 ± 1.1 % at dosage of 1.0 mg/kg dry weight soil (DWS) and 0.1 mg/kg DWS, respectively. The bioaccumulation of BPS in the earthworm was up to 111.6 ± 6.0 mg/kg lipid and 12.9 ± 2.9 mg/kg lipid with the initial dosage of 1.0 mg/kg DWS and 0.1 mg/kg DWS, respectively. Furthermore, BPS could induce oxidative stress and the process of antioxidant defense in earthworm cells at relatively high dose (1.0 mg/kg DWS and 10.0 mg/kg DWS), suggesting potential risks of BPS to the soil environment. This study could contribute to a more in-depth understanding of the fate of BPS in soil-earthworm system, and indicate a necessity for better understanding the environmental fate and ecological risks of BPA substitutes in the future.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Humanos , Bioacumulación , Contaminantes del Suelo/análisis , Suelo , Lípidos
12.
Water Res ; 230: 119526, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36577257

RESUMEN

Microplastics and nanoplastics are being assumed as emerging toxic pollutants owing to their unique persistent physicochemical attributes, chemical stability, and nonbiodegradable nature. Owing to their possible toxicological impacts (not only on aquatic biota but also on humans), scientific communities are developing innovative technologies to remove microplastics and nanoplastics from polluted waters. Various technologies, including adsorption, coagulation, photocatalysis, bioremediation, and filtration, have been developed and employed to eliminate microplastics and nanoplastics. Recently, adsorption technology has been getting great interest in capturing microplastics and nanoplastics and achieving excellent removal performance. Therefore, this review is designed to discuss recent innovations in developing promising adsorbents for the remediation of microplastics and nanoplastics from wastewater and natural water. The developed adsorbents have been classified into four main classes: sponge/aerogel-based, metal-based, biochar-based, and other developed adsorbents, and their performance efficiencies have been critically examined. Further, the influence of various pertinent factors, including adsorbents' characteristics, microplastics/nanoplastics' characteristics, solution pH, reaction temperature, natural organic matter, and co-existing/interfering ions on the removal performance of advanced adsorbents, have been critically assessed. Importantly, the particle application of the developed adsorbents in removing microplastics and nanoplastics from natural water has been elucidated. In addition, barriers to market penetration of the developed adsorbents are briefly discussed to help experts transfer adsorption-based technology from laboratory-scale to commercial applications. Finally, the current knowledge gaps and future recommendations are highlighted to assist scientific communal for improving adsorption-based technologies to battle against microplastics and nanoplastics pollution.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Plásticos , Contaminantes Químicos del Agua/análisis , Aguas Residuales , Adsorción , Agua
13.
Chemosphere ; 307(Pt 2): 135854, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35952788

RESUMEN

Bisphenol S (BPS) is a contaminant of emerging concern, its exposure and phytotoxicity towards plants, however, is scarce. This study aimed at revealing the BPS translocation in plants and phytotoxicity in the presence of Polystyrene (PS) microplastics. Results found that BPS and PS showed no effect on plant growth, indicating the tolerance of plants towards BPS and PS co-contamination. In addition, plants enriched BPS from soil, and a major part of absorbed BPS was accumulated in roots, as supported by the higher BCF value in roots compared with leaves. Besides, the low TF (<1) suggested the capacity of plants to accumulate BPS in roots, and less translocation to leaves. PS negatively affected the translocation of BPS in plants. PS with large size (5 µm) also increased the distribution of BPS in organelles. Exposure risk assessment suggested low concern of BPS carried in plants to human health. This study underlines the bioaccumulation of BPS in plants, and the effects of PS in the translocation process.


Asunto(s)
Araceae , Microplásticos , Humanos , Plásticos/toxicidad , Poliestirenos/toxicidad , Suelo
14.
Sci Total Environ ; 849: 157938, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-35952887

RESUMEN

Bisphenol compounds (BPs) are usually applied in the production of school supplies, however, little is known on the occurrence of BPs in school supplies. In this study, 15 BPs were detected in 121 samples of school supplies collected from commercial market. Among all compounds studied, BPA, BPF, and BPS were the dominant compounds in school supplies with the detection frequency of 93.15 %, 85.62 % and 82.53 %, respectively, and at median concentrations of 161, 23.64 and 14.11 ng g-1 dw. The total concentrations of BPs varied among types of school supplies in the following order: paper (median: 1347 ng g-1 dw) > fabric (521.4 ng g-1 dw) > plastic (472.7 ng g-1 dw) > rubber (352.4 ng g-1 dw). Risk assessment of BPs in school supplies was evaluated by the estimated daily intake (EDI) via dermal absorption, and the median EDIs of ∑15 BPs were 156.78 ng d-1 (11.27-37,042.37 ng d-1) and 432.75 ng d-1 (32.44-91,624.22 ng d-1) for general and occupational people, respectively.


Asunto(s)
Compuestos de Bencidrilo , Goma , Humanos , Fenoles , Plásticos , Instituciones Académicas
15.
Environ Res ; 215(Pt 2): 113945, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36027965

RESUMEN

The stability and applicability of UiO-66-(NH2)2 metal-organic framework (MOF) nanoparticles (NPs) were successfully improved in this study by incorporating them into alginate biopolymer during the manifestation of crosslinking agents-calcium chloride and glutaraldehyde-via a simple, environment-friendly, and facile approach to eradicate potentially toxic metals (PTMs) such as Cr6+, Cr3+, Cu2+, and Cd2+ from water and real electroplating wastewater. Hydrophilic functional groups (i.e., -OH, -COOH, and -NH2) are imperative in the smooth loading of UiO-66-(NH2)2 MOF- NPs into three-dimensional (3-D) membrane capsules (MCs). The X-ray photoelectron spectroscopy (XPS) results suggested that UiO-66-(NH2)2 MOF was effectively bonded in/on the capsule via electrostatic crosslinking between -H3N+ and -COO-. Scanning electron microscopy results revealed a porous honeycomb configuration of the 3-D SGMMCs (S: sodium alginate, G: glutaraldehyde, M: MOF NPs, and MCs: membrane capsules). The maximum monolayer absorption capacities for Cr6+, Cr3+, Cu2+, and Cd2+ were 495, 975, 1295, and 1350 mg/g, respectively. The results of Fourier transform infrared spectroscopy and XPS analyses showed that electrostatic attraction and ion exchange were the main processes for PTM removal used by the as-developed 3-D SGMMCs. The as-developed 3-D SGMMCs exhibited outstanding selectivity for removing the targeted PTMs under the specified pH/conditions and maintained >80% removal efficiency for up to six consecutive treatment cycles. Notably, > 60% removal efficiencies for Cr6+ and Cu2+ were observed when treating real electroplating wastewater. Therefore, the as-developed 3-D SGMMCs can be used as an exceptional multifunctional sorbent to remove and recover PTMs from real electroplating wastewater.


Asunto(s)
Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Adsorción , Alginatos , Cadmio , Cloruro de Calcio , Cápsulas , Galvanoplastia , Glutaral , Concentración de Iones de Hidrógeno , Ácidos Ftálicos , Aguas Residuales/química , Agua , Contaminantes Químicos del Agua/análisis
16.
Chemosphere ; 307(Pt 1): 135667, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35835236

RESUMEN

Although the toxicity of triclosan (TCS) and galaxolide (HHCB) in freshwater has been reported, little study is shed light on their molecular toxicity mechanism and the regulation of humic acid (HA). In this work, freshwater algae E. gracilis was selected to explore these processes, and the molecular toxicity mechanism was analyzed by metabolomics. TCS was more toxic to E. gracilis than HHCB at 1 d exposure with the EC50 value of 0.76 mg L-1, but HHCB showed a higher toxicity as the exposure time prolonged. HA could alleviate the toxicity of TCS and HHCB, mainly due to the inhibition of TCS uptake and oxidative stress, respectively. The perturbations on a number of antioxidant defense-related metabolites in response to TCS or HHCB also indicated oxidative stress was a main toxicity mechanism. However, the exposure to HHCB resulted in more pronounced perturbations in the purine metabolism than TCS, implying that HHCB may pose a genetic toxicity on algae. It may explain the higher toxicity of HHCB to algae as the exposure time increased. These findings provide a comprehensive understanding on the ecological risks of TCS or HHCB in natural waters.


Asunto(s)
Euglena gracilis , Triclosán , Contaminantes Químicos del Agua , Antioxidantes , Benzopiranos , Sustancias Húmicas , Purinas , Triclosán/análisis , Triclosán/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
17.
Sci Total Environ ; 846: 157451, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35868379

RESUMEN

Bisphenol S (BPS) has been widely applied as a replacement for BPA in industrial application, leading to the frequent detection in the environment. However, its impact on soil microbial communities has not been well reported. Here, effects of BPS exposure on soil microbial communities in the presence of polystyrene (PS) microplastics were revealed. Rapid degradation of BPS occurred with a degradation rate of up to 98.9 ± 0.001 % at 32 d. The presence of BPS reduced the diversity of soil microbial communities, and changed community structures. After BPS treatment, Proteobacteria, and its members Methylobacillus, Rhodobacteraceae and Mesorhizobium became dominant, and were considered as potential biomarkers indicating BPS contamination. Co-occurrence network analysis revealed the increased relationships of certain groups of microbes after BPS treatment. The resultant low stability and resilience towards environment disturbance of microbial community networks implied the biotoxicity of BPS towards soil ecosystems. The degradation and biotoxicity of BPS (p > 0.05) in soil was not affected by the presence of PS. Our findings showed that exposure to BPS could reshape soil microbial communities and impair the robustness of microbial co-occurrence networks.


Asunto(s)
Microbiota , Suelo , Compuestos de Bencidrilo/análisis , Microplásticos , Plásticos
18.
Sci Total Environ ; 839: 156239, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35643131

RESUMEN

Bisphenol analogues (BPs) are ubiquitous emerging contaminants in water environments and have wide polarity ranges (1.65 < log Kow < 7.2). Integrated passive sampling strategy rarely contains hydrophilic and hydrophobic organics simultaneously, while the method has good application perspective in monitoring organic contaminants. This work evaluated passive sampling performance for fifteen BPs in a newly developed passive sampler, i.e., hydrophilic-lipophilic balance sorbent-embedded cellulose acetate membrane (HECAM). In the dynamic accumulation experiments, both hydrophilic and hydrophobic BPs (including moderately hydrophilic BPs) well followed first-order kinetic uptake in the HECAMs. The estimated uptake rate constants, elimination rate constants, and equilibrium partition coefficients for BPs ranged from 4.4 L g-1 d-1 to 14.7 L g-1 d-1, 0.22 d-1 to 0.72 d-1, and 3.99 to 4.64, respectively. The kinetic parameters for BPs in HECAM show limited correlations to log Kow values, which the rule differs from traditional passive sampler. In the study of elimination kinetics, three deuterium labeled compounds showed incomplete elimination in HECAM and did not follow first-order isotropic exchange kinetics. Dual sorption mechanisms including both adsorption and partition were found for chemicals in HECAM, which the partitioned part could release to water and the adsorbed part could not easily release to water from HECAM. As a result, performance reference compounds (PRCs) calibration may be inapplicable to HLB sorbent-based passive sampler. The field deployment of HECAM in coastal waters of Guangdong, China resulted in the detection of eleven BPs, which indicated that the waters have been polluted by various BPs. Finally, monitoring strategy of simultaneous passive sampling hydrophobic and hydrophilic organic contaminants in surface waters was recommended.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Celulosa/análogos & derivados , Monitoreo del Ambiente/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Agua , Contaminantes Químicos del Agua/análisis
19.
Bull Environ Contam Toxicol ; 109(6): 943-948, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35076718

RESUMEN

The occurrence and health risk of hexabromocyclododecane (HBCD), a brominated flame retardant with its three diastereoisomers, in drinking water sources in the lower Yangtze River in China was investigated. Its concentration ranged from 0.58 to 3.71 ng/L and averaged at 1.18 ng/L. Among the three diastereoisomers of α-, ß- and γ-HBCD, γ-HBCD was the dominant one accounting for 44% (ranging 27-82%) to the total concentration. Source of HBCD in the contaminated site was discussed according to its spatial distribution and diastereoisomer profile. The margin of exposure (MOE) approach was applied to evaluate the health risk of HBCD through drinking water by estimated exposure and derived reference dose. The MOE was 17 for adults and 12 for children in the worst-case scenario, suggesting a trivial health concern.


Asunto(s)
Agua Potable , Retardadores de Llama , Hidrocarburos Bromados , Contaminantes Químicos del Agua , Niño , Humanos , Ríos , Contaminantes Químicos del Agua/análisis , Hidrocarburos Bromados/análisis , Retardadores de Llama/análisis , China
20.
Sci Total Environ ; 812: 152370, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34915017

RESUMEN

With thousands of chemicals discharged into the aquatic environment, it is necessary to identify those that are likely to be having the greatest impact on wildlife to better protect the ecosystem. A risk ranking approach was developed to compare the ecotoxicological risk of chemicals on aquatic wildlife with a wide range of environmental measurement data and ecotoxicity data. Nineteen metals including some rarely monitored ones including antimony (Sb), molybdenum (Mo), cobalt (Co), vanadium (V), titanium (Ti) and thallium (Tl) in the lower Yangtze River were risk ranked as a case study. The risk ranking approach was conducted in three tiers: general risk ranking, lethal effects vs. non-lethal effects risk ranking, and species group-specific risk ranking. Iron, copper and titanium were identified as being of greatest concern. The contamination of iron, zinc, copper and nickel was widespread and may have already harmed wildlife according to the overlap between ecotoxicity and monitored levels. Based on this analysis, the risk from copper and some rarely monitored metals (titanium and boron) may have been underestimated. Greater efforts to reduce copper, iron and titanium contamination could make an important difference to the health of Chinese freshwater organisms in the Yangtze River.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Animales , Animales Salvajes , China , Ecosistema , Monitoreo del Ambiente , Metales Pesados/análisis , Metales Pesados/toxicidad , Ríos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...